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We report a theoretical investigation of the robustness of two-dimensional inviscid
magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers with respect
to three-dimensional perturbations. We use a combination of linear stability analysis
and direct numerical simulations to analyse three problems, namely the flow in the
interior of a triaxial ellipsoid, and two unbounded flows: a vortex with elliptical
streamlines and a vortex sheet parallel to the magnetic field. The flow in a triaxial
ellipsoid is found to present an exact analytical model which demonstrates both the
existence of inviscid unstable three-dimensional modes and the stabilizing role of the
magnetic field. The nonlinear evolution of the flow is characterized by intermittency
typical of other MHD flows with long periods of nearly two-dimensional behaviour
interrupted by violent three-dimensional transients triggered by the instability.
We demonstrate, using the second model, that motion with elliptical streamlines
perpendicular to the magnetic field becomes unstable with respect to the elliptical
instability once the magnetic interaction parameter falls below a critical magnitude
whose value tends to infinity as the eccentricity of the streamlines increases.
Furthermore, the third model indicates that vortex sheets parallel to the magnetic
field, which are unstable for any velocity and any magnetic field, emit eddies with
vorticity perpendicular to the magnetic field. Whether the investigated instabilities
persist in the presence of small but finite viscosity, in which case two-dimensional
turbulence would represent a singular state of MHD flows, remains an open question.

1. Introduction
1.1. Motivation

Turbulent flows of liquid metals under the influence of magnetic fields occur under
a wide range of circumstances, ranging from metallurgy (Davidson 1999) and fun-
damental turbulence research (Moreau 1990; Tsinober 2001) to the movement of the
Earth’s inner core (Moffatt 1978). It is widely accepted that when the magnetic Reyn-
olds number Rm (to be defined below) is small, and the magnetic field is sufficiently
strong, homogeneous magnetohydrodynamic (MHD) turbulence becomes nearly two-
dimensional and the electromagnetic dissipation of kinetic energy is weak. Such a
situation is sometimes modelled using purely two-dimensional equations in which the
electromagnetic energy dissipation vanishes. The purpose of the present paper is to
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Figure 1. Distribution of kinetic energy at N � 1.

critically assess this approach in an investigation of stability of structures typically
observed in two-dimensional flows with respect to three-dimensional perturbations.

Let us start by discussing the issue at the centre of our study in some detail. When
an incompressible fluid with density ρ, kinematic viscosity ν, electrical conductivity
σ , and permeability µ0 moves with velocity U and characteristic length scale L in a
uniform magnetic field B , and when the magnetic Reynolds number Rm = µ0σUL

is small, the state of the flow is characterized by the Reynolds number and the
electromagnetic interaction parameter defined respectively as

Re ≡ UL

ν
, N ≡ σB2L

ρU
. (1.1)

We are interested in fully developed turbulence (Re → ∞) under a strong magnetic
field N � 1. It has been established by Moffatt (1967) (see also Davidson 1997) and
confirmed experimentally by Alemany et al. (1979) and numerically by Schumann
(1976), Zikanov & Thess (1998), Knaepen & Moin (2004) that the turbulent flow
tends to become anisotropic and to develop flow structures which are elongated
along the magnetic field so as to avoid electromagnetic (Joule) dissipation. It is
arguable whether or not the flow can finally attain a purely two-dimensional form
with no variations along the magnetic field and with zero Joule dissipation. In reality,
one is always left with a quasi-two-dimensional flow because of confining walls,
where Hartmann boundary layers develop (Sommeria 1986), or because of highly
elongated structures which are not suppressed. Sommeria & Moreau (1982) have
aptly summarized our conceptual understanding of MHD turbulence at N � 1 by
characterizing the distribution of kinetic energy among the wavenumbers k⊥ and k‖
perpendicular and parallel to the magnetic field, respectively. This distribution of
kinetic energy in the state of so-called ‘quasi-two-dimensional turbulence’ is sketched
in figure 1. For N � 1 the kinetic energy of the flow is confined to a narrow region
in the wavenumber space, outside the ‘Joule cone’ in which electromagnetic energy
dissipation takes place and below those wavenumbers k⊥ for which viscous dissipation
dominates. The angle φ ∼ N−1/2 of the energy-containing region shrinks to zero as
N → ∞. This picture can lead to the assumption that for the idealized case of the
flow in an unbounded domain and for sufficiently strong magnetic field quasi-two-
dimensional MHD turbulence becomes purely two-dimensional and the Joule energy
dissipation vanishes.

However, there have been strong experimental and numerical indications that this
assumption does not hold. In their experiments on freely decaying homogeneous
MHD turbulence in mercury Alemany et al. (1979) and Caperan & Alemany (1985)
found that variations of the velocity fluctuations along the applied magnetic field and
strong Joule dissipation persisted even at high interaction parameters. Disagreements
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between drag measurements of MHD flows in channels with very large aspect
ratios (low influence of Hartmann walls) (Tsinober 1990) and purely two-dimensional
numerical simulations of turbulent channel flow by Jimenez (1990) give rise to serious
doubts whether quasi-two-dimensional turbulence is close to purely-two-dimensional
turbulence. Direct numerical simulations of forced MHD turbulence by Zikanov &
Thess (1998), albeit restricted to moderate interaction parameters, indicated that two-
dimensional vortices, once they have formed, may undergo violent three-dimensional
instabilities resulting in an intermittent behaviour. Experimental (Lahjomri, Caperan
& Alemany 1993) and numerical (Mutschke et al. 2001) investigations of a flow
around a cylinder under the influence of a magnetic field parallel to the incoming
flow have shown that three-dimensional instabilities persist for strong magnetic fields.
Finally, numerical simulations of MHD turbulence subject to a two-dimensional
forcing, which have been carried out by Nakauchi, Oshima & Saito (1992) using
an EDQNM model, have provided evidence that even for very high values of the
interaction parameter and strong non-isotropy of the flow, the Joule energy dissipation
of the flow tends to a non-zero finite value.

The foregoing observations show that a purely two-dimensional state is hard to
achieve by an MHD flow (if it is achievable at all) even if there are no confining
Hartmann walls. This is obviously due to the survival of perturbations with
large length scales along the magnetic field. The difficulty in establishing a purely
two-dimensional MHD flow can be considered from two different viewpoints. One
can say that the magnetic field was not strong enough to make the flows entirely
two-dimensional in the experiments and simulations mentioned. Alternatively, one
can hypothesize that the magnetic field is, in principle, unable to suppress the always
present instability of two-dimensional flows to three-dimensional perturbations.

In the present paper we therefore investigate the robustness of purely two-
dimensional turbulence using stability theory combined with direct numerical
simulations. We emphasize at the outset that our stability analysis is entirely inviscid.
Very high Reynolds number Re = 106 is used in the nonlinear simulations. The
molecular viscosity together with the numerical viscosity of the scheme add some
dissipation but, since only the initial stages of instability are simulated, the flows
can be considered essentially inviscid. The assumption of zero viscosity makes our
stability problems amenable to rigorous analytic treatment which would not be the
case if we had added viscosity. We are aware that one should be wary of drawing
far-reaching conclusions based on inviscid stability theory since, as in the case of
the magnetorotational instability in sheared or differentially rotating fluids (Balbus &
Hawley 1998), viscosity may provide a cutoff at small scales.

Our presentation is organized as follows. In the following section we start our
discussion with the consideration of a flow in a triaxial ellipsoid by deriving an exact
low-dimensional model for a flow at Rm 	 1. This model, in spite of its simplicity and
limitation to a narrow class of flows, illustrates the main ideas of our work. In § 3 we
formulate the general stability problem for two-dimensional flows in an unbounded
domain and identify those structures, namely elliptical vortices and vortex sheets,
which play a key role in the transition from two-dimensional to three-dimensional
behaviour at high Reynolds number. Section 4 contains an analysis of the linear
stability of a single unbounded vortex with elliptical streamlines, which can be carried
out almost entirely analytically, and identifies the elliptical instability (Kerswell 2002)
as one mechanism for the formation of three-dimensional structures in MHD. The
instability is further investigated in full three-dimensional nonlinear simulations of a
spatially limited vortex. In § 5 we discuss the Kelvin–Helmholtz instability of vortex
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sheets when the basic flow is parallel to the magnetic field. In § 6, we summarize our
conclusions and discuss some open questions which would be useful to investigate in
future.

1.2. On the proper definition of the magnetic interaction parameter

Our stability analyses to be presented below will be performed for an inviscid fluid,
corresponding to Re → ∞. Hence the magnetic interaction parameter N will be the
only remaining dimensionless group and it is important to define it in such a way
that it reflects the intrinsic properties of the instabilities.

There are two possible approaches to the definition. One is to formally apply the
formula (1.1) with L and U being the typical length and velocity scales in some real
or imaginary ‘reference’ state of the flow. This approach was followed in the majority
of earlier investigations. One particular example is the numerical simulations by
Schumann (1976), Zikanov & Thess (1998), or Knaepen & Moin (2004), where the
reference state was the isotropic state immediately before the application of the
magnetic field. Defined in this way, the parameter does not reflect the transformation
of the flow caused by the imposed magnetic field but, rather, identifies the flow
evolution at given external conditions (size of the flow domain, properties of the fluid,
and the strength of the magnetic field).

Another way is to consider N as a measure of the ratio between the Lorentz force
and inertia forces at any given moment of the flow evolution. In this case, one has
to take into account that the strength of the Lorentz force is determined by the
magnitude of the gradient of velocity in the direction of the magnetic field. As the
flow transforms into anisotropic state, the Lorentz force and, thus, the effective value
of N decreases. For example, one can formally estimate the ratio between the Lorentz
and inertia forces as (see (3.1) in this paper and discussion in Vorobev et al. 2005)

Neff ≡ σB2

ρU

L3

L2
||
, (1.2)

where L|| is the current length scale in the direction of the magnetic field.
Although reflecting the fact that the Lorentz force becomes weaker in anisotropic

flows and disappears in purely two-dimensional flows, the definition (1.2) does not
provide an unambiguous identification of a flow in the entirety of its evolution.
Furthermore, it put us in an awkward position of dealing with a constantly changing
governing parameter. For these reasons, we follow the more traditional definition
(1.1) in this paper.

In the problems without a well-defined length scale L, such as those considered in
§§ 2 and 4 of this paper, another definition of the interaction parameter is required.
Considering N as a ratio between the typical eddy turnover time T and the Joule
damping time τ ≡ ρ/σB2 and estimating T as ω−1, where ω is the typical vorticity,
one arrives at

Nvort ≡ σB2

ρω
. (1.3)

This definition can be rendered consistent with (1.1) or (1.2) depending on whether
the reference or current value of ω is used. In this paper, we employ the first strategy,
the reference state being the basic state, the linear or nonlinear instability of which is
investigated.

Yet another definition of the magnetic interaction parameter is required when
considering the problem of linear stability of a vortex sheet of zero thickness in § 5.1.
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In this case, the basic flow lacks well-defined scales of both length and vorticity. The
only possible definition is

N ≡ σB2

ρU0k
(1.4)

based on the velocity of the basic flow U0 and the reciprocal wavenumber k−1 of the
perturbation as the velocity and length scales.

2. Instability in a bounded domain
2.1. An exact solution for inviscid MHD flow in a triaxial ellipsoid

Consider an inviscid electrically conducting incompressible fluid which is confined to
the interior of the electrically insulating triaxial ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1, (2.1)

and subjected to the influence of a homogeneous magnetic field B =Bez. If the
magnetic Reynolds number Rm defined in the previous section is small, the dynamics
of the flow is governed by the equations

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p +

1

ρ
J × B, ∇ · v = 0, (2.2)

J = σ (−∇φ + v × B), ∇ · J = 0, (2.3)

where J is the electric current density and φ the electric potential (Roberts 1967;
Moreau 1990; Davidson 2001). The justification to neglect the magnetic field b
associated with the eddy currents J (where J =µ−1

0 ∇× b) comes from the fact that its
magnitude b ∼ µ0JL ∼ µ0σvLB is smaller than the magnitude of the applied field by
a factor Rm; for a liquid metal under laboratory conditions we have σ ≈ 106 Ω−1 m−1,
v ≈ 0.1 m s−1, L ≈ 0.1 m and thus Rm ≈ 0.01. The equations are supplemented by
the boundary conditions

v · n = J · n = 0 (2.4)

where n denotes the unit vector normal to the surface of the ellipsoid. The first of
these is the free-slip boundary condition for the velocity which implies that the wall
can exert no tangential stress on the (inviscid) fluid. The second boundary condition
expresses that no electric current can leave the fluid since the ellipsoid is assumed to
be electrically insulating. The electrical boundary conditions are known to play an
important role in MHD flows at low Rm (see Dormy, Cardin & Jault 1998; Dormy,
Jault & Soward 2002; Hollerbach & Skinner 2001). It would have been interesting
therefore to study the present problem for a wall with arbitrary conductivity. This
general case, however, is not amenable to rigorous analytic treatment and will therefore
not be considered here.

If there is no magnetic field, there exists a family of three-dimensional time-
dependent velocity distributions of the form

v(x, y, z, t) = U (t)

[
y

c

b
ez − z

b

c
ey

]
+ V (t)

[
z
a

c
ex − x

c

a
ez

]
+ W (t)

[
x

b

a
ey − y

a

b
ex

]
.

(2.5)

They are exact solutions to the Euler equations provided that the set of
coefficients (U, V, W ) satisfies three nonlinear ordinary differential equations, which
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are mathematically identical to the equations describing the free rotation of a solid
body (Gledzer & Ponomarev 1977; Gledzer, Dolzhansky & Obukhov 1981; Kerswell
2002). The velocity field described by (2.5) automatically satisfies the incompressibility
constraint, the free-slip condition, and is a superposition of three basic two-
dimensional flows. Each of them has elliptical streamlines and a spatially uniform
vorticity directed along the axis of the ellipsoid which is perpendicular to the plane
of motion. Notice that U , V , and W have the dimensions of vorticity, not velocity.

We extend the existing theory to the case when a magnetic field is present by
expressing the electric current density in the form

J(x, y, z, t) = I (t)

[
y

c

b
ez − z

b

c
ey

]
+ J (t)

[
z
a

c
ex − x

c

a
ez

]
+ K(t)

[
x

b

a
ey − y

a

b
ex

]
(2.6)

which satisfies the condition ∇ · J = 0 as well as the electric boundary condition
(2.4). The coefficients I, J, K describe the strength of eddy currents induced by the
movement of the fluid in the magnetic field. Notice that I , J , and K have the
dimensions A m−3, i.e. current density per metre. If the fluid rotates around the x-axis
(U �= 0, V = 0, W = 0), the induced current is in the (x, z)-plane (I = 0, J �= 0, K =
0), and its strength is proportional to the magnetic field and the intensity of the flow.
We may therefore expect that J ∼ BU . By the same token it may be anticipated that
I ∼ BV for a rotation around the y-axis, while for rotation around the z-axis the
electromotive force is likely to be balanced by an electric potential gradient which
leads to the hypothesis K = 0.

In order to express (I, J, K) through (U, V, W ) we take the curl of Ohm’s law (2.3),
which gives ∇ × (v × B) = ∇ × J/σ and invoke the representations (2.5) and (2.6).
This provides us, after some algebra, with the desired relations I = σBV ab/(b2 + c2),
J = −σBUab/(a2 + c2), K = 0 for the amplitudes of the eddy currents. Notice that it
is not necessary to compute the electric potential explicitly. However, one can readily
integrate (2.3) for φ in order to verify that the computed electric current density is
indeed correct. We now eliminate the pressure by taking the curl of equation (2.2).
Observing that the vorticity ω = ∇ × v corresponding to the velocity field (2.5) has the
form

ω = U ·
(

b

c
+

c

b

)
ex + V ·

(a

c
+

c

a

)
ey + W ·

(
a

b
+

b

a

)
ez (2.7)

and is spatially uniform, it follows that (v · ∇)ω = 0 and the vorticity equation becomes

∂ω

∂t
= (ω · ∇)v +

1

ρ
∇ × (J × B). (2.8)

Inserting the expressions for v, ω, J , and B it is readily shown that they are exact
solutions to the vorticity equation provided that the coefficients U, V, W obey the
equations

(b2 + c2)U̇ = (b2 − c2)V W − σB2

ρ

(
a2b2

a2 + c2

)
U, (2.9)

(c2 + a2)V̇ = (c2 − a2)UW − σB2

ρ

(
a2b2

b2 + c2

)
V, (2.10)

(a2 + b2)Ẇ = (a2 − b2)UV. (2.11)
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It should be emphasized that the derivation of this system from the governing
equations (2.2) and (2.3) did not involve any approximation.

The system (2.9)–(2.10) can be made non-dimensional by introducing dimensionless
variables according to (U, V, W ) = α(U∗, V∗, W∗) and t = t∗/α where α =
(σB2/ρ)a2b2/[(a2 + c2)(b2 + c2)] is the inverse of the Joule decay time. Using the
abbreviations A = a/c and B = b/c and dropping the asterisk the equations become

U̇ =
B2 − 1

B2 + 1
V W − U, (2.12)

V̇ =
1 − A2

1 + A2
UW − V, (2.13)

Ẇ =
A2 − B2

A2 + B2
UV. (2.14)

(For the remainder of § 2 the letter B will be used to denote the aspect ratio and
should not be confused with the strength of the magnetic field.) This nonlinear system
has a number of remarkable properties. The nonlinear terms conserve the total kinetic
energy and the total angular momentum

E = 1
2
[(1 + B2)U 2 + (1 + A2)V 2 + (A2 + B2)W 2], (2.15)

L = (1 + B2)2U 2 + (1 + A2)2V 2 + (A2 + B2)2W 2. (2.16)

The magnetic field gives rise to an anisotropic damping, embodied in the linear
dissipative terms on the right-hand side of equations (2.12) and (2.13). The total
kinetic energy obeys

dE

dt
= −µ (2.17)

where µ = (1 + B2)U 2 + (1 + A2)V 2 is the rate of Joule dissipation. As a result, the
kinetic energy of the flow will always decay unless it is in a purely two-dimensional
motion perpendicular to the magnetic fied (U = V = 0, W �= 0). Observe that the
electromagnetic interaction parameter N (cf. equation (1.1)), which is commonly used
in the analysis of MHD turbulence and represents the ratio between the eddy turnover
time and Joule damping time, does not appear in the system because we have used
the Joule time scale α−1 to non-dimensionalize the vorticity coefficients. Instead, the
non-dimensional values of U , V , and W represent the order of magnitude of 1/N .
Our approach here is similar to the one using the vorticity-based definition (1.3) of
the interaction parameter. When the ellipsoid is axisymmetric around the axis of
the magnetic field (A = B), the component of the angular momentum parallel to the
magnetic field is an additional conserved quantity which imposes a constraint on the
decay of energy. This property has been proven by Davidson (1997) for the case of
a sphere and arbitrary initial conditions. It is however worth noting that our simple
system does not only permit an easy derivation of this property but also admits a
fully analytic solution to the decay problem, which can be readily worked out by
taking W = const. and solving the remaining linear problem for U and V in the
axisymmetric case.

2.2. Linear stability analysis of steady states

Equations (2.12)–(2.14) admit a steady solution (U, V, W ) = (0, 0, W0) describing two-
dimensional motion perpendicular to the magnetic field. (Remember that the magnetic
field is in the z-direction.) We analyse the stability of this solution by considering
infinitesimally perturbed states of the form (U, V, W ) = (0, 0, W0) + (ξ, η, ζ ) and
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solving the linearized version

ξ̇ = −ξ +

(
B2 − 1

B2 + 1
W0

)
η, (2.18)

η̇ =

(
1 − A2

1 + A2
W0

)
ξ − η, (2.19)

ζ̇ = 0, (2.20)

of equations (2.12)–(2.14). Assuming that the perturbations depend on time as
(ξ, η, ζ ) = (ξ0, η0, ζ0) exp (λt) the solvability condition for the resulting linear algebraic
system readily yields the growth rates in the form

λ1/2 = −1 ± W0

√
(A2 − 1)(1 − B2)

(A2 + 1)(1 + B2)
, λ3 = 0. (2.21)

Instability occurs when A > 1, B < 1 or A < 1, B > 1, i.e. when the magnetic field is
parallel to the middle axis of the ellipsoid and the W -component exceeds the critical
value

Wc =

√
(A2 + 1)(1 + B2)

(A2 − 1)(1 − B2)
. (2.22)

In dimensional form (where W has dimension s−1) the result is

Wc =
σB2

ρ

√
(a2 + c2)(c2 + b2)

(a2 − c2)(c2 − b2)
. (2.23)

When a → ∞ and b → 0 we have Wc → 1 (non-dimensional) and Wc → σB2/ρ

(dimensional) which implies that a very elongated structure becomes unstable when the
interaction parameter defined as N = σB2/ρW becomes smaller than the critical value
Nc = 1. For the purpose of comparison with the stability results for an unbounded
elliptical vortex to be derived in § 4, it is useful to rewrite the stability result (2.23) for
the particular case a = c

√
E, b = c/

√
E in terms of the eccentricity E as

Nc =

∣∣∣∣E − 1

E + 1

∣∣∣∣ . (2.24)

The critical interaction parameter is unaffected by the exchange of the axes a and
b, i.e. Nc(E) = Nc(E

−1). For E > 1, Nc is a monotonically increasing function of the
eccentricity with Nc → 1 as E → ∞. The angle θ between the vorticity of the unstable
mode and the direction of the magnetic field is equal to π/2. Observe that W0 > Wc is
a sufficient condition for instability of the steady state but W0 < Wc does not imply its
stability since the class of our perturbations is limited to the velocity fields described
by equation (2.5).

The stability result (2.23) is unambiguous but its interpretation (2.24) in terms of
the interaction parameter is not. This is because, as has already been discussed in
§ 1.2, the definition of N is not unique. It was suggested by one of the referees that the
definition based on the actual magnitude of the vorticity ω of the basic flow, namely

Nvort =
σB2

ρ‖ω‖ =
σB2

ρ(a/b + b/a)W
, (2.25)
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leads to a different conclusion. For this choice of N the stability threshold (2.23)
translates into

Nvort
c =

E

E2 + 1

∣∣∣∣E − 1

E + 1

∣∣∣∣ . (2.26)

The function Nvort
c (E) is zero for E =1, E → 0 and E → ∞ and attains a maximum

value of approximately 0.15 at E ≈ 2.9 (and by symmetry at E ≈ 1/2.9). One could
therefore argue that there is an optimal finite aspect ratio that is most unstable.

The instability that we have identified in this particular MHD problem is
the elliptical instability, widely known in ordinary hydrodynamics. Its nature was
extensively discussed by Kerswell (2002). In an unbounded domain it can be best
understood as the result of a parametric resonance between Kelvin waves, existing
due to the homogeneously rotating part of the velocity field, and the strain field, being
a result of the elliptical shape of the streamlines. The elliptical instability is known
to provide a fundamental mechanism in ordinary hydrodynamics for the transition
to turbulence. Our stability results show that a magnetic field can suppress this
instability. However, for any value of the magnetic field there are always flows (with
W > Wc in equation (2.23)) which are susceptible to the elliptical instability. It would
be interesting to study the effect of viscosity and Hartmann boundary layers upon this
instability. Unfortunately, this is not possible within a rigorous analytic framework.
In the Appendix we show that the addition of phenomenological dissipative terms
to the linear stability equations (2.18)–(2.20) leads to the conclusion that the critical
velocity for rotation around the middle axis increases with viscosity whereas the
(stable) rotation about the short or the long axis cannot be destabilized by viscosity.

2.3. Nonlinear dynamics and the unstable character of purely two-dimensional motion

Having identified the elliptical instability as a basic mechanism responsible for
transforming a two-dimensional into a three-dimensional MHD flow, we wish to
analyse the nonlinear evolution of the system. We focus our attention on the
case where the initial state is an almost two-dimensional flow characterized by
U (0) 	 W (0) and V (0) 	 W (0). A numerical solution of (2.12)–(2.14) for A= 2
and B =0.5 shows that as long as W (0) < Wc = 5/3, i.e. the velocity is below
its critical value, the system always relaxes to a purely two-dimensional state
(U =0, V = 0, W < Wc). Figure 2 shows that the evolution from an initial condition
with W (0) > Wc proceeds in a quite different way. Although the system finally settles
into a purely two-dimensional state, the evolution towards this state is characterized
by long periods of nearly two-dimensional motion, occasionally interrupted by violent
three-dimensional transients. During these transients kinetic energy is fed from the
non-dissipative two-dimensional mode W to the three-dimensional modes U and V

as can be seen in figure 2(c). The transients lead to a significant Joule dissipation
of kinetic energy as is illustrated by the behaviour of the total kinetic energy and
energy dissipation in figures 2(b) and 2(d), respectively. As a further illustration,
figure 2(e) shows the solution trajectory in the phase space (U, V, W ). The reversals
of W during the transients occur in turn in the U = V and U = − V planes. The
periods of nearly stagnant two-dimensional behaviour correspond to the system
residence near the upper and lower turning points. Such behaviour indicates that
a decaying initially nearly two-dimensional MHD flow does not necessarily stay
close to a two-dimensional form owing to the action of the elliptical instability. In
figure 2(a) one might have expected that the reversals cease once the value of |W | has
fallen below the critical value Wc = 5/3.
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Figure 2. Decaying solution of (2.12)–(2.14). (a) Amplitude W (t) of two-dimensional motion
with vorticity parallel to the magnetic field. (b) Total kinetic energy (2.15). (c) Amplitudes
U (t) and V (t) of motion with vorticity perpendicular to the magnetic field. (d) Rate of Joule
dissipation µ. Notice that the amplitude W in the final state in (a) is small but non-zero.
Its numerical value depends on the initial condition but obeys always |W | < |Wc|. (e) Phase
trajectory of the solution.

The unstable character of purely two-dimensional evolution is further illustrated
by slightly extending our model to include a phenomenological forcing term, which
describes the application of an external torque parallel to the direction of the magnetic
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Figure 3. As in figure 2 but for the forced system (2.12), (2.13), (2.27). It may seem that the
two-dimensional flow state persists at W growing to much larger values than the linear stability
limit Wc = 5/3 (see a and c). In fact, the quasi-two-dimensional periods are characterized by
slow evolution of small-amplitude U and V , and the energy growth starts soon after W crosses
the stability threshold.

field. Equation (2.14) is thus replaced by

Ẇ =
A2 − B2

A2 + B2
UV + 1. (2.27)

The new model admits an exact two-dimensional solution

U = 0, V = 0, W = t, (2.28)

whose kinetic energy grows monotonically with time and whose Joule dissipation is
zero. However, the numerical solution computed from a weakly three-dimensional
initial condition shows a completely different behaviour. The flow corresponding to
the numerical solution shown in figure 3 is periodic in time and involves long-lasting
periods of almost two-dimensional motion interrupted by strong three-dimensional
excursions. Most importantly, the flow is ‘statistically’ steady in that the time-
averaged kinetic energy does not change and the mean Joule dissipation is finite. The
flow is therefore neither mathematically nor physically close to the two-dimensional
behaviour suggested by the exact solution (2.28).

Although our simple model is only a caricature of the behaviour of real MHD
turbulence, it allows us to draw a number of conclusions which serve as guidelines
for the investigation of the full problem. In particular, we have learned that
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(i) a purely two-dimensional MHD flow inside an ellipsoid is prone to the elliptical
instability if N � 1 or Nvort � 0.15,

(ii) the nonlinear three-dimensional evolution of the elliptical instability leads to
strong Joule dissipation,

(iii) an initially nearly two-dimensional flow does not necessarily stay close to
purely two-dimensional evolution,

(iv) a decaying flow eventually arrives at a stable steady state,
(v) on the other hand, if the energy is supplied by an external forcing, such a stable

state is never achieved and the flow remains in intermittent evolution indefinitely.
The intermittent behaviour of the model system with forcing is not unexpected
and consistent with known behaviour of more realistic MHD flows. For example,
simulations of forced MHD turbulence (Zikanov & Thess 1998) revealed a similar
intermittent evolution with large-scale quasi-two-dimensional structures established
under the action of the magnetic field only to become unstable and disintegrate
shortly after that. On the other hand, the intermittency of decaying solutions shown
in figure 2 is a new phenomenon for MHD flows observed for the first time in our
model system.

3. Instability in an unbounded domain
For the further analysis it is convenient to write the basic equations (2.2) and (2.3)

for the flow of a liquid metal in a homogeneous magnetic field at low magnetic
Reynolds number in a more compact form as

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p − σB2

ρ
�−1 ∂2v

∂z2
, ∇ · v = 0. (3.1)

Here �−1 is a symbolic notation for the solution of a Poisson equation of the
form �a = b (with boundary condition |a(x)| → 0 for |x| → ∞) as a = �−1b and the
formulation (3.1) is entirely equivalent to (2.2) and (2.3) (Roberts 1967). We are
interested in the stability of two-dimensional flows for which the Joule dissipation
vanishes. The most general flow of this type is of the form

v(x, y, t) = U(x, y, t) + W (x, y, t)ez (3.2)

where U has the properties U · ez =0, ∇ · U = 0, and U and W are solutions of

∂U
∂t

+ (U · ∇)U = − 1

ρ
∇P, (3.3)

∂W

∂t
+ (U · ∇)W = 0. (3.4)

The two terms in equation (3.2) describe the superposition of a two-dimensional
motion perpendicular to the magnetic field with a motion parallel to the magnetic
field.

Investigation of the stability of the general solution (3.2) is a formidable task (even
in the inviscid case), as it would require consideration of the initial value problem
(3.1) for all admissible fields U and V . We shall simplify the task by considering two
families of structures which we believe are representative of the solutions to (3.3) and
(3.4), namely columnar vortices with elliptical streamlines and vortex sheets whose
velocity is parallel to the direction of the magnetic field.
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4. Instability of motion perpendicular to the magnetic field
4.1. Linear stability of an elliptical vortex

In order to anlyse the stability of two-dimensional motion perpendicular to the
magnetic field, we consider an unbounded strained vortex described by

U(x, y) = −ΩEy ex + ΩE−1x ey. (4.1)

When the eccentricity E = 1, the flow is a solid-body rotation around the axis of
the magnetic field with vorticity 2Ω . When E > 1, the flow has uniform vorticity
ω =(E+E−1)Ω , uniform strain, and its streamlines are ellipses with semi-axes a =

√
E

and b = 1/
√

E, as can be readily inferred from the streamfunction

ψ = −Ω

(
E

x2

2
+ E−1 y2

2

)
(4.2)

corresponding to (4.1). We extend the analysis of Bayly (1986) and Waleffe (1990)
to the magnetic case by perturbing the basic flow (4.1) according to v = U + u.
Linearizing (3.1) with respect to the perturbation we obtain the stability equation

∂u
∂t

+ (U · ∇)u + (u · ∇)U = − 1

ρ
∇p − α�−1 ∂2u

∂z2
, ∇ · u = 0, (4.3)

where α = σB2/ρ. This system admits solutions of the form

u = û(t) · exp

[
ik(t) · x − α

∫ t

0

k2
z (t

′)

k2(t ′)
dt ′

]
, (4.4)

p = p̂(t) · exp

[
ik(t) · x − α

∫ t

0

k2
z (t

′)

k2(t ′)
dt ′

]
, (4.5)

where the unknown functions û(t), p̂(t), and k(t) must be determined by enforcing
the stability equation and incompressibility constraint (4.3). Inserting (4.4) and (4.5)
into (4.3) we obtain

˙̂uj + ik̇lxlûj + ikmAmlxlûj + Ajlûl = −ikj p̂, kj ûj = 0, (4.6a, b)

where A12 = − ΩE, A21 = Ω/E, and Aij =0 otherwise, are the components of the
velocity gradient matrix. These equations are identical to those for the non-magnetic
problem, solved by Bayly (1986) and Waleffe (1990). For the sake of completeness we
repeat the main steps of their solution here. For details, however, we refer the reader
to the original papers. Solvability of (4.6) requires that the terms independent of xl

and proportional to xl balance each other separately. After elimination of the pressure,
which is accomplished by a scalar product of (4.6a) with k, and incorporation of the
incompressibility condition in the form k̇j ûj = − kj

˙̂uj we are left with the stability
equations

˙̂uj = (2k−2kjkl − δjl)Almûm, k̇j = −klAlj , (4.7a, b)

which describe the evolution of the velocity perturbation and wavenumber
with time. Equation (4.7b) is readily solved in the form k(t) = k0[sin θ cosφ(t),
E sin θ sinφ(t), cos θ] where φ(t) = Ω(t − t0) and k0 and t0 are integration constants.
Here θ denotes the angle between the wavenumber and the magnetic field. With this
explicit solution at hand, equation (4.7a) becomes a linear differential equation whose
coefficients are periodic functions of time with periodicity T = 2π/Ω . Floquet theory
states that the general solution to such equations is a product of a function with
exponential time dependence and a function which has the same periodicity as the
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coefficients. Therefore the solution for û(t) must be of the form û(t) = eλtw [φ(t)] where
w [φ + 2π] = w [φ]. We compute the growth rates λ in the same way as Bayly (1986),
who showed that they can be expressed in the form λ(Ω, E, θ) = Ω(2π)−1 ln[µ(E, θ)]
where the µ are eigenvalues of an auxiliary eigenvalue problem. With this step
done, we can write down the amplitude of perturbations as |u(t)| = |w(t)| exp[F (t)],
introducing the abbreviation

F (t) = λ(E, θ, Ω)t − α

∫ t

0

cos2 θdt ′

sin2 θ cos2 Ω(t ′ − t ′
0) + E sin2 θ cos2 Ω(t − t ′

0) + cos2 θ
.

(4.8)

The second term on the right-hand side is the only correction to the non-magnetic
solution. Reverting to dimensionless time φ = Ω(t − t0) and using a magnetic
interaction parameter defined by

N = α/Ω = σB2/ρΩ (4.9)

we can express F as

F (φ) =
φ

2π
ln[µ(E, θ)] − N

∫ φ

0

dφ′

1 + tan2 θ[cos2 φ′ + E sin2 φ′]
. (4.10)

It is seen that the amplitude of perturbations does not have a purely exponential time
dependence, in contrast to many common stability problems. This is a consequence
of the anisotropic electromagnetic damping embodied in the last term of equ-
ations (4.8) and (4.10). A criterion for instability may nevertheless readily be formula-
ted, since the integral in equation (4.10) is a periodic function of φ. The system
is unstable if F increases over one period, i.e. F (2π) − F (0) > 0, it is stable if
F (2π) − F (0) < 0, and the condition for neutral stability is therefore F (2π) − F (0) = 0.
From the last condition we obtain the desired explicit expression for the neutral
surface as

N(E, θ) = ln[µ(E, θ)]

{∫ 2π

0

dφ

1 + tan2 θ[cos2 φ + E sin2 φ]

}−1

. (4.11)

To avoid confusion (because the word ‘neutral’ starts with ‘N’) we remind the reader
that N is (still) the magnetic interaction parameter defined by equation (4.9).

As was already discussed in §§ 1.2 and 2.2, we can introduce an alternative definition
of the interaction parameter based on the actual vorticity of the basic flow, namely

N vort =
σB2

ρ‖ω‖ =
N

E + E−1
. (4.12)

In the next section we shall interpret the linear stability results both in terms of N

and N vort.

4.2. Stability results for the elliptical vortex

Figure 4 shows the numerically computed values of the neutral interaction parameter
as a function of E and θ . Observe that there is an intimate connection between
the magnetic and the non-magnetic problem in that the interaction parameter of
the critical magnetohydrodynamic mode is proportional to the growth rate of an
unstable perturbation in the purely hydrodynamic problem. For E = 1 we have N =0,
indicating that a vortex with circular streamlines is always stable. The modes take
the form of Kelvin waves which rotate about the magnetic field with a frequency
2Ω cos θ (see e.g. Greenspan 1968).
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Figure 4. Stability of an unbounded strained vortex. (a) Neutral magnetic interaction
parameter (4.11) as a function of eccentricity E and angle θ between the wavenumber vector
k of the perturbations and the axis of the vortex. (b, c) critical interaction parameter Nc and
θc as functions of E. � and � in (b) show parameters, at which, respectively, instability and
stability of a space-limited vortex is detected (see § 4.3). Inset in (b) shows the behaviour of the
vorticity-based interaction parameter introduced in (4.12). Inset in (c) is a plot of the critical
angle over a wider range of eccentricities.

As soon as the eccentricity is non-zero, the flow becomes unstable with respect to
perturbations located within a band θ−(E) � θ � θ+(E). Notice that the location
of this unstable band is the same as in the non-magnetic problem since it is
determined by the zeros of ln[µ(E, θ)]. In particular, this band originates at θ = π/3
(Bayly 1986), i.e. weakly elliptical unstable perturbations rotate around the magnetic
field with the same frequency as the basic flow. For a given value of E > 1 the
maximum of N(E, θ) over all θ in the unstable band defines the critical magnetic
interaction parameter Nc(E) and a critical angle θc(E). These quantities are plotted in
figure 4(b, c). Figure 4b shows that Nc increases rapidly with increasing eccentricity
while the critical angle θc stays in the vicinity of π/3. The vorticity-based interaction
parameter N vort is also a monotonically increasing function of the eccentricity, as
can be verified by inspection of the inset in figure 4b. This is in contrast to the
behaviour of N vort(E) for the triaxial ellipsoid which has maximum at E ≈ 2.9, as
was discussed in § 2.2. The monotonic increase of the critical interaction parameter
implies that strongly elliptical structures are particularly prone to instability. Having
in mind that the nonlinear evolution of initially circular vortices governed by the
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two-dimensional Euler equation (3.3) always leads to the generation of elliptical
vortices, we can conclude that the two-dimensional evolution proceeds in such a
way as to make the system more susceptible to the elliptical instability. Whether the
elliptical instability is also relevant to the destabilization of strained vortex filaments
which are characteristic of two-dimensional turbulence remains speculative (Kerswell
2002). The fact that θc ∼ π/3 may seem counterintuitive, as one usually expects in
MHD that unstable structures have a tendency to align with the magnetic field
(θ → π/2). However, it should be noticed that θc is monotonically, albeit slowly,
increasing. We performed additional computations at E up to 100 and found a
clear indication that θ asymptotes towards π/2. The shape of the critical curve is
qualitatively similar to that obtained analytically for the flow in the ellipsoid in § 2
(equation (2.24)). However, in the latter problem we had Nc → 1 as E → ∞ reflecting
the fact that the internal flow is more stable owing to its confined nature.

4.3. Nonlinear instability of a finite elliptic vortex

In this section, we complement the analysis of elliptic instability by three-dimensional
nonlinear simulations of a horizontally spatially limited vortex. Understanding of the
effect of finite size seems to be important because, as was demonstrated by Zikanov
& Thess (1998), a forced turbulent flow in the presence of a strong magnetic field
tends to develop quasi-two-dimensional strained vortices with typical horizontal size
corresponding to the energy injection scale. It was also shown that the combined action
of the elliptic instability and Joule dissipation can result in an intermittent quasi-two-
dimensional–three-dimensional behaviour not unlike the intermittency obtained in § 2
of this paper for a model system.

The non-magnetic precursor of our simulations is the work by Lundgren &
Mansour (1996), who consider transition to turbulence in a swirling flow confined
in a box 0 � x � Lx = π/b1, 0 � y � Ly = π/b2, 0 � z � Lz with impermeable
sidewalls and periodicity in the z-direction. The basic flow is two-dimensional with
the streamfunction

Ψ = A
sin b1x sin b2y

b2
1 + b2

2

, (4.13)

and vorticity

ω = A sin b1x sin b2y. (4.14)

The streamlines given by (4.13) are nearly elliptical in the central part of the box with
the eccentricity E =Lx/Ly . The flow is not affected by a vertical magnetic field and
is an exact solution of the Euler equations.

It was shown by Lundgren & Mansour (1996) that the instability of (4.13) to
infinitesimal three-dimensional perturbations is qualitatively similar to that of an
unbounded uniform vortex (4.1). Quantitative similarity (close stability limits and
critical wavenumbers) can, in principle, be achieved if one considers perturbations
with high wavenumber k → ∞. In real numerical simulations, this limit can never
be attained. Moreover, as demonstrated below, the wavelengths of the most energetic
growing modes are comparable with the horizontal size of the vortex. The average
vorticity of the non-dimensional basic flow

〈ω〉 = A(LxLy)
−1

∫ Lx

0

∫ Ly

0

ω dy dx (4.15)

is, therefore, a more relevant measure of vorticity, presumably serving the purpose
of comparison with the linear theory developed for an infinite vortex better than the
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peak vorticity ω(Lx/2, Ly/2). For this reason, in the simulations, we use the vorticity
amplitude A= π2/4, which provides the average vorticity 〈ω〉 = 1.

The flow can be conveniently simulated using one of the pseudospectral codes
designed for DNS of turbulent flows in a periodic box. The code can be based on
a sine-transform or, if the numerical resolution is not an issue, a full fast Fourier
transform. In the latter approach, which we follow, symmetries are enforced on the
initial conditions so that four identical flows are calculated in the domain 2Lx ×2Ly ×
Lz with impermeable boundaries at x = Lx and y =Ly .

We consider an incompressible low-Rm MHD flow

∂v

∂t
+ (v · ∇)v = −∇p − N�−1 ∂2v

∂z2
, ∇ · v = 0. (4.16)

The vortex dimensions are Lx = 2π, Ly = π, Lz =4π, which implies eccentricity E = 2.
The magnetic interaction parameter is defined as N = σB2/ρ based on 〈ω〉 as the
scale for L/U .

The viscosity term with Re = 106 is added to the momentum equation in the
calculations with the purpose of controllable removal of spurious small-scale
oscillations. Such a high value of Re results in a scenario maximally close to the
inviscid linear instability considered in the previous section. The resulting viscous
dissipation is negligibly weak, probably weaker than the artificial numerical dissipation
of the scheme. Both kinds of dissipation are active only at the smallest resolved scales
of the flow.

This ‘pseudo-inviscid’ approach is different from the approach of Lundgren &
Mansour (1996) who used moderate values of Re and studied the entire process of
transition to a turbulent state. The rationale is that the focus of our analysis is on
the first stages of the nonlinear evolution of the instability, which is characterized by
the concentration of energy in the large-scale modes (the base flow and the unstable
eigenmodes with few subharmonic modes generated by their nonlinear interaction).
At sufficiently high Reynolds number, this evolution is dominated by the elliptic
instability and magnetic dissipation. The role of viscosity is negligible. The results
presented below only concern these first stages. In order to guarantee that they
are unaffected by inadequately resolved small-scale dynamics we monitor the two-
dimensional (in the k⊥, kz-plane) energy spectra and stop the simulations as soon as
the first noticeable excitation of the small scales is observed.

The effective numerical resolution (number of degrees of freedom used for one
vortex) is Nx × Ny × Nz =64 × 32 × 128. The initial velocity perturbations added to
the basic flow at t = 0 are random fields that satisfy the incompressibility conditions
and have the energy power spectrum

E(k) = 10−6k4 exp[−2(k/2)2]. (4.17)

Four numerical experiments with N = 0, 0.5, 1, and 2 are presented below. The
evolution of global characteristics of the flow is illustrated in figure 5. A good
indicator of the stability is growth/decay of the average kinetic energy of the parallel
(vertical) velocity component, which is absent in the basic flow. One can clearly see
in figure 5(a) that the magnetic field suppresses the instability. The vortex is unstable
at N = 0, 0.5, and 1, but stable at N =2. This is in qualitative agreement with the
results of linear stability analysis of an infinite vortex as illustrated in figure 4(b).
The growth rate of the perturbations clearly decreases with N . The evaluation based
on the quasi-exponential portions of the E3(t) curves yields 0.25, 0.18, and 0.09, for
N = 0, 0.5, and 1, respectively.
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Figure 5. Nonlinear instability of a limited elliptic vortex. (a) Perturbation kinetic energy
E3(t) of the parallel velocity component. (b) Rate of viscous dissipation ε(t). (c) Rate of Joule
dissipation µ(t). (d) Anisotropy coefficient (4.18.)

As further characteristics of the evolving three-dimensional perturbations, spatially
averaged rates of viscous and Joule dissipation are shown in figure 5(b, c) as functions
of time. We also show, in figure 5(d), the characteristic of the anisotropy of the flow
gradients

G =
〈(∂u/∂z)2〉
2〈(∂u/∂x)2〉 . (4.18)

The coefficient G is zero in a two-dimensional flow that does not depend on the
z-coordinate (for example, the basic vortex) and unity in an isotropic flow. Use of
this coefficient follows the earlier simulations of MHD turbulence of Zikanov &
Thess (1998) and Schumann (1976). The necessity for the factor 2 in the denominator
becomes obvious if one considers the kinematic property of the isotropic velocity
spectrum (Hinze 1959)〈

∂ui

∂xn

∂uj

∂xm

〉
=

E

λ
[δij δmn − 1

4
(δinδjm + δimδjn)],

where ui are the velocity components, E is the energy, and λ is the Taylor microscale.
The unstable flow behaviour shown in figure 5(a–d) can be explained on the basis

of the interaction between evolving instability, with its energy transfer to smaller
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Figure 6. Instability of a limited elliptic vortex. Contours of the module of vorticity in the
cross-section y = π/2 through the centre of the vortex and iso-surface of |ω| = 1.5|ω|mean are
shown. Times are chosen so as to correspond to approximately equal stages of flow evolution.

scales and increasing three-dimensionality, and magnetic field. First and foremost, the
Joule dissipation delays the transition. Furthermore, as one can conclude from the
fact that the viscous dissipation rates achieved at late stages of transition decrease
significantly with growing N , the presence of magnetic field prevents development of
sharp velocity gradients.

Of interest is the behaviour of three-dimensionality characteristics, such as G in
figure 5(d). At linear and early nonlinear stages of the evolution, they grow steadily.
The absolute growth rate is smaller at higher N but it seems that different flows taken
at similar stages of evolution have comparable values of G. As the flow approaches
nonlinear saturation, its dimensional anisotropy, as expressed by G, stabilizes at
approximately constant levels. Although it is difficult to recognize in figure 5(d), these
levels are quite different with and without magnetic field. For N = 0, we have G ≈ 0.75
and for N = 0.5, G ≈ 0.6. No reliable estimate can be obtained at N =1 but G never
exceeds 0.15.

The spatial structure of the unstable flow during early stages of evolution is
illustrated in figure 6. One can see that the magnetic field does not produce any
dramatic changes. The perturbations at N = 0.5 and N = 1 do seem to be more
elongated in the vertical direction than the perturbations at N = 0, but the effect is
weak. The dominating wavelengths are also comparable.

The conclusion that a moderately strong magnetic field does not significantly modify
the structure of instability modes is confirmed by the two-dimensional energy spectra
shown in figure 7. The energy is concentrated in approximately the same modes at all
three values of the magnetic interaction parameter. Moreover, we see that these modes
follow closely the prediction of the linear theory for an infinite vortex (cf. figure 4c).
Their wavenumbers lie close to the lines corresponding to the angle θ = π/3 between
the wavenumber vector and the magnetic field.

The absence of noticeable dependence of the instability modes on N was consistently
observed in all our numerical experiments. Remember, however, that the simulations
were limited to early stages of the transition. At later stages, when the flow becomes
truly three-dimensional and turbulent, the Joule dissipation is expected to play a more
significant role.
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Figure 7. Instability of a limited elliptic vortex. Two-dimensional power spectra of
perturbation kinetic energy. Lines corresponding to θ = π/3 are shown for comparison.

5. Instability of motion parallel to the magnetic field
5.1. Linear stability of a vortex sheet of zero thickness

In purely two-dimensional flow the velocity component parallel to the magnetic field
behaves like a passive scalar, transported by the velocity U(x, y, t), cf. equation (3.4).
Such evolution is known to produce steep gradients of W (x, y, t) (see e.g. Kraichnan
& Montgomery 1980; Lesieur 1990). In a real two-dimensional flow these gradients
would be carried around and stretched which makes their general analysis difficult
and their stability properties complex. However, since the archetype of such structures
is a single vortex sheet, which is known to undergo a Kelvin–Helmholtz instability,
we will discuss the stability of the flow

W (x) = U0

x

|x| (5.1)

under the influence of the parallel magnetic field. This problem, along with more
general unidirectional velocity fields, was originally considered by Drazin (1960).
However, the spatial structure of the unstable modes were not investigated there and
is therefore the central focus of the discussion given below.

The stability of infinitesimal perturbations v = (ikψ̂(x), 0, − dψ̂/ dx) exp[ik(z − ct)]
(where ψ̂(x) is the x-dependent part of the two-dimensional complex-valued
streamfunction Ψ̂ (x, z)) superimposed upon the basic flow (5.1) is determined by
the third-order polynomial equation

−ic(1 + c2) + 1
4
N(1 + 3c2) = 0 (5.2)

where N = σB2/ρU0k is the magnetic interaction parameter defined according to
(1.4), and space and time are non-dimensionalized using k−1 and U0k, respectively.
The normal mode for x > 0 is given by

ψ̂(x) = exp

(
−x

√
1 − i

N

c − 1

)
(5.3)

where it is assumed that the square root with the positive real part has been taken.
Drazin (1960) has demonstrated that all three solutions of equation (5.2) are purely

imaginary and that one of the solutions always has positive imaginary part, but he did
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Figure 8. Instability of a vortex sheet. (a) Solution of the dispersion equation (5.2)
(dashed lines are asymptotics for N → ∞). (b) Streamfunction of the unstable mode at
N 	 1 (5.4). (c) Streamfunction of the unstable mode at N � 1 (5.5). In (b, c) solid (dashed)
lines show positive (negative) values.

not explicitly calculate c(N) and ψ̂(x). Figure 3(a) shows the imaginary parts of all
three solutions as a function of N . Notice that the wavenumber k does not explicitly
appear in the solution because it represents the only characteristic length scale of the
problem and has therefore been used to non-dimensionalize the equations. However,
the wavenumber enters the definition of N .

For each value of N there are two stable and one unstable solutions. When
N = 0 we recover the classical Kelvin–Helmholtz instability with c = i. For N > 0 the
imaginary part of the solution originating from c = i always remains positive which
implies that the vortex sheet is unstable for arbitrarily strong magnetic fields, although
the growth rate decreases with N . The asymptotic behaviour of the wave velocity
is c = i (1 − N/4) for N 	 1 and c = i /

√
3 for N � 1. The spatial structure of the

unstable modes is best revealed by the two-dimensional (real-valued) streamfunction
ψ(x, z, t) =Re{Ψ̂ (x, z)} =Re{ψ̂(x) exp[ i (z − ct)]} (non-dimensional variables) which,
for a fixed time t =0, is readily evaluated as

ψ(x, z) = exp
[
−

(
1 + 1

4
N

)
x
]
cos

[
− 1

4
Nx + z

]
(5.4)
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for N 	 1 and as

ψ(x, z) = exp
[
−31/4

(
1
8
N

)1/2
x
]
cos

[
−33/4

(
1
8
N

)1/2
x + z

]
(5.5)

for N � 1. The streamfunctions are shown in figures 3(b) and 3(c). The unstable modes
for large interaction parameter have an aspect ratio z/x ∼ N1/2 as is characteristic of
MHD flows in strong magnetic fields.

5.2. Stability of a vortex sheet of finite thickness

The analysis of the previous section is valid only in the limit of infinitely large
wavelengths. At finite wavelength, the thickness of the vortex sheet must be taken
into account and the non-dimensional wavelength k becomes another parameter
affecting the growth rate of the perturbations. For a consistent analysis, it is also
desirable to consider the effect of finite Reynolds number since viscosity is required
for formation of a vortex sheet of finite thickness.

It was shown by Hunt (1966) that a sufficiently strong magnetic field may result
in the most unstable perturbations being three-dimensional. This phenomenon is
addressed in the separate investigation of Vorobev & Zikanov (2007). Here we limit
the analysis to the instability to two-dimensional (uniform in the spanwise direction)
perturbations, i.e. to an extension of the results of previous section to the case
of finite thickness. The effect of finite Reynolds number was also investigated by
Vorobev & Zikanov (2007). While briefly describing this part of their results we focus
the following discussion on the inviscid case.

Using the perturbation streamfunction ψ̂(x) introduced in the previous section we
can write the non-dimensional Rayleigh equation as

(W − c)(d2ψ̂/dx2 − k2ψ̂) − ψ̂d2W/dx2 + iNkψ̂ = 0, ψ̂ → 0 as x → ±∞, (5.6)

where we used the velocity at infinity U0 and the half-width δ of the vortex sheet as
the velocity and length scales. The basic velocity profile

W (x) = erf
(

1
2
π1/2x

)
(5.7)

is used and the problem parameters are N = σB2δ/ρU0 and the non-dimensional
wavenumber k.

The problem is solved by a numerical method similar to that used by Betchov
& Szewczyk (1963) for a non-magnetic counterpart of the problem. Far from the
vortex sheet, at |x| >L, the basic velocity is approximately constant, W = ±1, so an
exponential solution can be found. We discretize the equation within −L < x <L

using a finite-difference scheme of second order and apply a shooting procedure to
determine the complex wave velocity c as an eigenvalue that provides a numerical
solution matching the asymptotic exponential solutions and their first derivatives at
x = −L and x = L. Parameter L and the number of grid points are chosen for each k

so that their further increase does not affect the solution. We found that L =10 (in
non-dimensional units) and 2000 grid points were more than sufficient at k > 0.01,
while larger values had to be taken at smaller k.

The results of calculations are presented in figures 9 and 10. One can clearly see in
figure 9(a) that increase of N leads to suppression of the growth rate σ = kIm[c]
and to reduction of the range of unstable wavenumbers k. To investigate the
asymptotic behaviour at N → ∞, we calculate, at 0 � N � 100, the maximum growth
rate σmax = maxk[σ (k)], the wavenumber kmax, at which this maximum occurred, and
the wavenumber klim such that all modes with k > klim are stable. One can see in
figures 9(b) and 9(c) that the magnetic field never fully suppresses the instability.
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Figure 9. Instability of a vortex sheet of finite thickness. (a) Growth rate σ = kIm[c] as a
function of the wavenumber k for different magnetic interaction parameters N . Unmarked
curves at bottom left correspond to N =5 and N = 10. (b) The maximum growth rate σmax

as a function of N ; ♦ mark the growth rates determined from nonlinear simulations. (c) The
wavenumbers kmax, and klim as functions of N .

There always exists a range of small wavenumbers, where the vortex sheet is unstable
to, albeit slowly, growing perturbations. This result is not surprising as it reflects the
simple fact that longer waves generate weaker velocity gradients and, thus, are less
susceptible to the suppression by the magnetic field. At very large wavelengths, the
low-Rm approximation ceases to be valid and our analysis has to be replaced by the
one based on the full MHD equations.

The agreement between the calculations and the analytical results for an infinitely
thin sheet in § 5.1 was verified by calculating Im[c] at k as small as 10−5 for two
cases, N =0 and N =10. It was confirmed that the numerical results converged,
correspondingly, to c = i and c = i/

√
3.

The main difference between the inviscid results presented in figure 9 and the
results obtained by Vorobev & Zikanov (2007) in the case of finite Reynolds number
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Figure 10. Instability of a vortex sheet of finite thickness. Streamfunctions of the unstable
modes at (a) N = 0.1 and k = 0.41 and (b) N = 10 and k = 0.01. Solid (dashed) lines are used
for positive (negative) values of the streamfunction. Note completely different x- and z-axis
scales of the two pictures.

is in the behaviour of long-wave perturbations. At finite Re, the magnetic field
stabilizes the modes with not only large but also small k. This has been observed at
10 � Re � 400 and N > 0. While suppression at high k is clearly consistent with our
inviscid results and, in general, with the mechanism of magnetic dissipation of strong
velocity gradients, the suppression at low k does not seem to have a simple physical
explanation. An important consequence of this modification is that, in the presence
of viscosity, a sufficiently strong magnetic field with N >Ncrit(Re) can completely
suppress the growth of two-dimensional perturbations. This is not in contradiction to
our inviscid results since Ncrit → ∞ as Re → ∞.

The spatial structure of the unstable inviscid modes is illustrated in figure 10(a, b).
The modes with k = kmax(N) are shown at low (N = 0.1) and high (N = 10) values
of the interaction parameter. Note different aspect ratios of the two pictures. The
structure in figure 10(b) is much more elongated in the direction of the magnetic field
than the structure in figure 10(a). If we recalculate the magnetic interaction parameter
with the wavelength as the length scale, the values corresponding to figures 10(a) and
10(b) will be 0.244 and 1000, respectively. The streamfunctions, therefore, represent
the finite-thickness counterparts of the streamfunctions shown in figures 8(b) and 8(c).

To finalize the discussion of the Kelvin–Helmholtz instability we illustrate the
nonlinear development of the two-dimensional inviscid unstable waves. The non-
dimensional governing equations are

∂v

∂t
+ v · ∇v = −∇p − Nuex, ∇ · v = 0, (5.8)

where u = (u, w) is the velocity field and p is the pressure. The Lorentz force in
the two-dimensional case is easily derived by taking the divergence of Ohm’s law
(equation (2.3)) which yields ∇2φ = (∇ × u) · B. Since the vorticity is perpendicular
to the magnetic field, the right-hand side of this equation vanishes and we have
φ = 0, from which it follows that J × B = σ (u × B) × B = −σB2uex . This formula
renders the mechanism of instability suppression particularly transparent. Normal
velocity perturbations associated with the wave induce electric currents in the spanwise
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Figure 11. Nonlinear evolution of vortex sheet instability. (a), Kinetic energy E1 of normal
velocity component is shown as a function of time for simulations with different values of
magnetic interaction parameter. (b, c), Streamlines and vorticity are shown for approximately
equal stages of evolution at N = 0.1 (b) and N = 10 (c). Note completely different z-axis scales
of the two pictures.

direction j = B0σu, which interact with the imposed magnetic field to generate the
returning force.

The problem is solved numerically in a manner similar to the earlier studies of non-
magnetic instability (see e.g. Patnaik, Sherman & Corcos 1976). The initial conditions
consist of the background shear flow (5.7) superimposed with a weak perturbation
in the form of a single wave of the most unstable wavelength λ= 2π/kmax and
the spatial shape given by (5.4) or (5.5). The non-dimensional amplitude of the
perturbation velocity is 10−3.

The computational domain is rectangular with size λ and periodic boundary
conditions in the streamwise direction. In the normal direction, both component
of the perturbation velocity vanish at the boundaries x = ±L, where L is chosen large
enough so that the artificial conditions do not affect the evolution of instability.

The numerical method is an adaptation of the method applied earlier by Zikanov,
Slinn & Dhanak (2003) for simulation of a turbulent Ekman layer. The spatial
discretization is a combination of the Fourier pseudo-spectral method in the
streamwise direction and the second-order finite-difference scheme in the normal
direction. The grid is clustered in the shear layer using the coordinate transformation
x = L sinh(Dζ )/ sinh(D/2), where D is the parameter that determines the degree of
clustering. The time-marching scheme is the explicit time-splitting method based on
the third-order Adams–Bashforth algorithm with variable time step.

The last comment concerns the viscosity. As in the case of a finite elliptic vortex
considered in § 4.3, we limit the simulations to the first stages of the nonlinear
instability of a flow with Re → ∞, i.e. in the case of negligible viscous dissipation.
Although a nominal viscous term is added to the equations, the Reynolds number is
set to 106 (so that the numerical dissipation is apparently stronger than the viscous)
and the two-dimensional spectrum is monitored to stop the computations as soon as
the small scales become populated.

The results are presented in figure 11(a, b). Four cases are considered, with N equal
to 0, 0.1, 1, and 10, and the perturbation wavenumber equal to kmax(N), which is
0.43, 0.41, 0.11, and 0.01, respectively. The evolution of growing unstable modes is
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illustrated in figure 11(a) by the behaviour of the average kinetic energy E1 = (1/2)〈u2〉
of the velocity component u normal to the direction of magnetic field and basic flow.
The curves also represent the average Joule dissipation rates, which, in this particular
case, are given by µ =2NE1. The initial drop of the perturbation amplitude is soon
replaced by nearly exponential growth, the rate of which is greatly affected by the
magnetic field. The growth rates σ evaluated on the basis of the exponential parts of
the curves are in good agreement with the linear theory (see figure 9b).

The typical flows with growing billows are shown in figure 11(b) for the cases of
small (N = 0.1) and large (N =10) magnetic interaction parameters. One can see that
the anatomy of a two-dimensional flow does not principally change under the action
of the magnetic field. We observe the same pattern of ‘cat’s eye’ core and stretched
‘braids’ as in the well-documented non-magnetic case (see e.g Patnaik et al. 1976).
The only significant effect of the magnetic field is the dramatic growth of the aspect
ratio of the billows resulting from the growth of the unstable wavelength. One must
note, of course, that this conclusion is limited to the early nonlinear stages of the
transition. Other features of flow structure may be strongly affected by the magnetic
field at late two-dimensional and three-dimensional stages.

6. Summary and conclusions
We have conducted several studies directed toward answering the question of

whether a purely two-dimensional turbulent flow of an electrically conducting fluid
described by equation (3.1) is stable with respect to three-dimensional perturbations
when it is subjected to a uniform magnetic field. Instead of solving the full time-
dependent problem for arbitrary flows (a hardly feasible task) we restricted our
attention to a model MHD flow in a triaxial ellipsoid and to linear instability and
subsequent nonlinear evolution of two prototype problems, namely a single elliptic
vortex and a shear layer.

By formulating and solving an exact low-dimensional model for the flow in an
ellipsoid we were able to provide evidence for the unstable character of purely two-
dimensional MHD flows. The nonlinear evolution illustrated, with a simple example,
another typical feature of MHD flows, the intermittent behaviour with long periods
of quasi-two-dimensional motion interchanging with violent three-dimensional bursts.

The linear stability analysis of the unbounded elliptical vortex showed that this
object is susceptible to the elliptical instability for an arbitrarily strong magnetic field
provided the eccentricity (strain) is sufficiently large. The nature of the instability is
not changed by the imposed magnetic field and remains that of the elliptic instability
to modified Kelvin waves. The effect of the magnetic field is to moderate the growth
of the unstable modes and to change the orientation of the neutral modes. The angle
between their wavenumber vector and the axis of the vortex increases with N . The
threshold of the instability and the form of the unstable perturbations was found to
be in agreement with the results of fully nonlinear three-dimensional simulations of
finite elliptic vortices.

The stability analysis of a free shear layer affected by a parallel magnetic field
showed that this flow is also unstable at arbitrary strength of the magnetic field.
This result was obtained at zero viscosity both for a vortex sheet and for a shear
layer of finite thickness. The analysis was limited to spanwise-uniform perturbations.
We found that the imposed magnetic field reduces the growth rate of the unstable
modes but is unable to fully suppress the instability. There always remains a range
of sufficiently large wavelengths in which the basic flow is unstable. The results of
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the linear analysis were extended to two-dimensional nonlinear simulations of the
evolution of unstable flow.

Our study does not provide an unambiguous answer to the main question
formulated at the beginning of this paper, namely, whether or not the purely two-
dimensional flow represents the high-field limit of three-dimensional MHD flows. It
does, however, show that a two-dimensional turbulent flow can become unstable in
the presence of an arbitrary strong magnetic field by forming unstable structures, such
as strongly strained elliptic vortices or thin vortex sheets. It is impossible to predict,
in the general case, the subsequent evolution of this flow. One of the possibilities
realizable in a forced flow situation is transition to a statistically steady anisotropic
MHD flow with a finite level of electromagnetic energy dissipation. Another is an
intermittent evolution as illustrated by our model flow in a triaxial ellipsoid.

One should be wary of drawing conclusions from inviscid stability analysis without
consideration of viscosity. A similar apparent paradox was encountered in the analysis
of the magnetorotational instability (Velikhov 1959; Chandrasekhar 1960; Balbus &
Hawley 1991, 1998) in differentially rotating fluids. Although mediated by a magnetic
field, the instability seemed to persist in the limit of arbitrarily small field strength.
The paradox was resolved by the realization that the unstable wavelengths become
shorter and shorter as the field strength decreases, so in reality viscosity and resistivity
provide a cutoff (Dubrulle & Knobloch 1992, 1993; Goodman & Ji 2002).

In the present problem one might think that the role of the viscosity is to damp
the three-dimensional instabilities at small scales so that the strong-field limit would
result in purely two-dimensional motion. However, the interplay of electromagnetic
and viscous energy dissipation here is more subtle. Viscosity is indeed capable of
providing a cutoff to the transverse wavenumbers k⊥ but it cannot prevent the two-
dimensional flow from radiating energy into the Joule cone sketched in figure 1. As
long as the system is unbounded in the z-direction, any increase of the magnetic field
will just lead to an increase of the wavelength of unstable modes while maintaining
the electromagnetic energy dissipation. At the present time it is impossible to say
in which situations and in what way this scenario will evolve. One counterexample
is provided by Vorobev & Zikanov (2007) who showed that the combined action
of viscosity and magnetic field can stabilize the long-wave perturbations of a free
shear layer. In order to comprehensively understand the role of the two dissipation
mechanisms, it would be necessary to fully extend the present stability analyses to the
viscous case.

It would be interesting to study the properties of strongly anisotropic MHD flows
by performing experiments on grid-generated turbulence in liquid metals (similar to
those by Alemany et al. 1979; Caperan & Alemany 1985) but in magnetic fields of
the order of 5 T. With Reynolds numbers of the order Re ∼ 106 (implying magnetic
Reynolds numbers Rm ∼ 0.1) one would get close to the limit of validity of the quasi-
static approximation (Rm 	 1) but would still be greatly beyond the capabilities of
direct numerical simulations.
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Appendix. The role of viscosity in the triaxial ellipsoid
In the presence of viscosity the flow in the ellipsoid can no longer be described

exactly by a three-dimensional model such as (2.12)–(2.14). This is because the
presence of Hartmann boundary layers at the walls cannot be captured by the simple
velocity field given in equation (2.5). However, we can qualitatively explore the role of
viscosity if we generalize the linear stability equations (2.18)–(2.20) to include weak
dissipation in the form

ξ̇ = −(1 + α)ξ +

(
B2 − 1

B2 + 1
W0

)
η, (A 1)

η̇ =

(
1 − A2

1 + A2
W0

)
ξ − (1 − β)η, (A 2)

ζ̇ = −γ ζ. (A 3)

Here α, β and γ are phenomenological damping parameters which are proportional
to the viscosity of the fluid. Carrying out the same analysis as in § 2.2 we obtain, after
some algebra, the growth rates

λ1/2 = −1 −
(

α + β

2

)
±

√
W 2

0

(A2 − 1)(1 − B2)

(A2 + 1)(1 + B2)
+

(
α − β

2

)2

, λ3 = −γ. (A 4)

If the rotation of the basic flow is around the middle axis, the critical W -component
becomes

Wc =

√
(A2 + 1)(1 + B2)

(A2 − 1)(1 − B2)
(1 + α)(1 + β). (A 5)

Thus, the critical velocity given by equation (2.22) increases with increasing viscosity,
implying that viscosity stabilizes the elliptical instability. If the rotation is about either
the short or the long axis of the ellipsoid, one might expect that the previously stable
solution could become unstable due to the viscosity. The situation is similar to the
free rotation of a rigid body about a fixed point in which the stable solution of
maximum energy (for given angular momentum) can be destabilized by arbitrarily
weak dissipation. In the present case, however, a straightforward analysis leads to
the result that in the cases A< 1, B < 1 and A> 1, B > 1 the system cannot become
unstable.
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